Ways to Improve Performance of Marginal ESP’s
BASICS

- Existing Equipment
- Existing Performance
- Present Operation
- Expected Performance
Existing Equipment

• Define the existing equipment - Initial
 – Size description
 – SCA
 – Volume
 – Velocity
 – Aspect ratio
 – Treatment time
Existing Performance

• Determine present day conditions
 – Volumes
 – Dust loadings
 – Velocity profiles
 – Ash chemistry
 – Coal analysis
 – Precipitator efficiency
Present Operation

- Low NOx Burners
- Blended and/or PRB fuel
- Excess air
- SCR
- Scrubber
- New tube surface in boiler
Expected Performance

• Define the parameters
 – Coal type
 – Ash loading
 – Volumes
 – Ash loadings
 – Anticipated efficiencies
 – Special conditions
Realistic Goals

• Are performance goals achievable?
 – Degree of probability
 – Sustained performance

• Will the equipment support the goals?
 – Condition
 – Age
 – Design
 – Reliability
Realistic Goals

- Define marginal first
- Define expected performance
Decision 2006

- Work with existing equipment
- Modify or rebuild existing equipment with newer design components
Existing Equipment

- Online evaluation
- Offline evaluation
- Field testing
- Equipment design parameters
- Equipment operational parameters
Online Evaluation

- Electrostatic Precipitator
 - Control operation
 - Limits or sparking
 - TR sizing
 - Waveshape analysis
 - Rapper cycling
 - Rapper impacting
Online Evaluation

• Boiler operation
 – O_2 Levels
 – Sootblowing
 – Economizer - ash system operation
 – Coal firing rate
 – Fuel analysis
Online Evaluation

• Auxiliary equipment
 – Flyash system
 – CEMS
 – Opacity monitors
Offline Evaluation

• Ductwork inspection
 – Erosion, corrosion, accumulation
 – Likelihood of stratification

• ESP inspection
 – Alignment
 – Distribution
 – Erosion
 – Corrosion
 – Inleakage – doors, welds, expansion joints
 – Sneakage – fields, hoppers
Offline Evaluation – cont.

• ESP inspection
 – Rapping effectiveness - CE, DE
 – Rapping sectionalization
 – Ash accumulations
 – Structural deformation
 • Nozzle connections
 • Hopper connections
 • Lubrite plates
Offline Evaluation

- Distribution
- Ash accumulation
- Changes from “as built”
Offline Evaluation

• Rapping effectiveness—not
Offline Evaluation

- Hopper evacuation
- Storage facility
Offline Evaluation

- Ash accumulation
- Gas distribution
- Duct design
- Poor velocity
Field Testing

- Current performance data
- Volumes
- Grain loading
- Volume splits
- Velocity profiles
- Current boiler operating data
- Ash chemistry
- Size analysis
Field Testing - Review

• ESP design - $w w_k$
• ESP operating – $w w_k$
• Original guarantee vs test efficiency
• Changes in process
• Deterioration
Particulate Loading vs Opacity

- Be careful with fines – PM 2.5
- Improvements may drop particulate load
- Opacity may not correspondingly drop
- Powder River Basin (PRB)
- 0.1 LB – 28% opacity - dispersion
- Analyze where you are & how to get to your required performance
Existing Equipment Modifications

- Gas distribution
- Transformer Rectifiers
- AVC controls
- Rapping systems
- Casing
- Hoppers
- Ash systems
Gas Distribution

- Improvements
- Model study
- CFD model
- Field testing
- Anti sneakage baffling
Transformer Rectifiers

- Sized for the bus section and field
- Upgrade for useful life and reliability
- Power Plus – compact design
- More sectionalization
AVC Controls

- Microprocessors
- Linear reactors
- Central control system
- Data acquisition
- Be sure the internals are ready
Rapping Systems

- MIGI’s
- Microprocessor controls
- Mounting methods
- Tapered rapper insulators
- Sectionalize
 - less Ft^2 per rapper
 - more rappers per anvil beam
Casing

- Doors – gaskets – inleakage
- Casing integrity – welded connections
- Ductwork integrity – welded connections
- Expansion joint frames, connections, material
- Leaking instrument and test ports
Hoppers

- Hopper heating evaluation repair / replace
- Hopper vibrators
- Hopper doors and sealing
- Level detection devices
- Ash system vent pipes
- Ash system fluidizing stones
Ash System

• Control system for more flexible operation
• Thorough system component review
 – Gates-operation-seating
 – Air system – dry air
 – Fluidizing stones
Precautions

• Sort through the information for real problems and solutions
• Look for the solution – not just equipment improvements
• Focus and categorize improvements
• Review particulate vs opacity
• Watch fuel characteristics
Major Modifications - Upgrades

- Rebuild with new internals
- Increase collecting surface
- Increase field height
- Effective increase in SCA
- Add a walk-in penthouse
- Increase plate spacing
- Replace weighted wires with RDE’s
- Decrease square foot of plate per rapper
- Decrease electrode length per rapper
Major Modifications-cont.

- Utilize walkway area to increase plate area
- Redesign as top and bottom access
- RDE’s can support limited access
- Must have extreme QA/QC on components
Major Modifications – cont.

- Parallel chamber – lower velocity
- Sectionalization in direction of flow
- Sectionalization across flow
- Consider wide plate spacing
- Deal with volume increases over time
Boiler Considerations

- Particle size – grind of pulverizers
- Air heater temperature stratification
- Tube surface – outlet temperature-volume
- Temperature – resistivity
- Duct profiles may be detrimental to distribution of particulate and temperature
- Inleakage in system
Other Major Modifications

• Ash conditioning – SO_3
 – Safety
 – Operating costs
 – Initial costs of system
• Agglomeration