Worldwide Pollution Control Association

Ameren Seminar August 19–20, 2008 Effingham, IL

Vist our website at www.wpca.info

Implications of SOx, NOx, and Hg on SCR and ESP Performance

2008 WPCA – Ameren ESP and SCR Seminar

Alan Ferguson

Agenda

- 1st topic
 SCR Description
- 2nd topic Issues with SCR
- 3rd topic Effect of SCR on Plant Systems
- 4th topic
 Effect of SCR on Pollution Control Equipment
- 5th topic Future Performance Requirements

LOW NOx CHOICES

- Firing System Tuning and/or Basic Modifications
- Fuel Switching
- Firing System/Boiler Modification Possibly Including SOFA Systems, Pulverizer, Pressure Parts, Control System Modifications and/or Neural Networks
- FGR
- SCR (or SNCR) Addition
- Combination of Any of the Above

SCR Configuration

High-Dust SCR

- Reactor Upstream of APH
- Full Dust Load from Boiler Passes through the SCR Reactor
- Larger Catalyst Channels (Pitch) Required to Prevent Plugging
- Shorter Catalyst Life
- Cost Effective Solution

TYPES OF SCR

Tail End System:

- Very Low Dust Load in the Reactor
- Long Catalyst Life
- Heat Exchanger/ Supplemental Heater Required after ESP or FF to Increase Temperature to About 575°F
- Much Smaller Catalyst Channels (Pitch) Increase Packing Density

NOx Reduction

- Low NOx Burners
 - LOI
- SNCR
 - Ammonia Slip
- SCR
 - Ammonia Slip
 - SO₂ / SO₃ Oxidation
 - Mercury Oxidation

Agenda

1st topic
 SCR Description

2nd topic Issues with SCR

• 3rd topic Effect of SCR on Plant Systems

4th topic
 Effect of SCR on Pollution Control Equipment

• 5th topic Future Performance Requirements

- Three Sources of Ammonia can be used
 - Anhydrous
 - Aqueous
 - Urea
- Local Rules, Permit Issue
- An Analysis of Risks and Consequences for each Plant

Large Particle Ash (LPA)

- "Popcorn" from Combustion
- Slag from Boiler Tubes
- Agglomerated Ash Particles
- Over 2 to 3 mm
- Plug Air Heaters
- Plug Screens Over Catalyst or Catalyst
- Poor NOx Performance, Erosion from High Velocity

SO₂ Oxidation

- Catalyst Oxidizes SO₂ to SO₃
- Similar to Catalytic Converter on Cars
- The formulation affects oxidation
- Low Oxidation Rates Achievable at Higher Catalyst Cost

Bisulfate Formation

$$NH_{3(g)}$$
 + $SO_{3(g)}$ + $H_2O_{(g)}$ \longrightarrow $NH_4HSO_{4(I)}$

Causes:

- 1. High concentrations of SO₃ and unreacted ammonia in the flue gas
- 2. Low operating flue gas temperature

Countermeasures:

- 1. Design for low ammonia slip
- 2. Design catalyst for low SO₂ to SO₃ oxidation rate
- 3. Install economizer bypass system
- 4. Install ABS Tolerant air heater baskets
- 5. Reversible with high operating temperature

Control Issues

- Unreliable NOx analyzers
- Time delay of samples
- Overfeed of ammonia during step changes to process (loss of pulverizer)
- Underfeed during ramp up
- Sample / Hold during monitor calibration
- Ammonia slip monitors

Seasonal Operation

- Isolate Catalyst from Gas Path at end of Ozone season
- Purge Flue Gas from SCR reactor
- Use Sonic Horns or Soot blowers to clear ash deposits
- Maintain Catalyst above dew point during storage
- Near Zero aging when stored properly
- Damper Seal Air Pressurization of Reactor

Agenda

- 1st topic
 SCR Description
- 2nd topic Issues with SCR
- 4th topic
 Effect of SCR on Pollution Control Equipment
- 5th topic Future Performance Requirements

- SO₂ does not hinder reduction
- SO₂ oxidizes to SO₃
- SO₃ combines to form Ammonium Bisulfate (ABS)
- SO₃ can condition ash for ESP
- ABS fouls Air Heater and possibly ESP or FF

Air Preheater

- Catch place for ammonium bisulfate
- Temperature just right for ABS
- Basket Design

Fans and Duct

- Fans designed for system loss
- Ammonium bisulfate if temperature is right
- Duct designed for even distribution and no ash piles

Ammonia

- Needed for the NOx reduction
- Combines with SO₃ forming ABS
- Can have its own emission limit
- Removed in WFGD
- Conditions ash for ESP
- Can be plant safety issue

Agenda

- 1st topic
 SCR Description
- 2nd topic Issues with SCR
- 3rd topic Effect of SCR on Plant Systems
- 5th topic Future Performance Requirements

Particulate

- High Dust SCR can handle
- Requires cleaning system for catalyst
- Can be conditioned by SO₃ / Ammonia
- Collection in ESP or FF

ESP / Fabric Filter

- Collects fly ash
- SCR impact low
- Ammonia / Ammonium bisulfate / carbon

Ammonia Impact

- Ammonia from the SCR will end up in/on and will affect
 - APH surfaces
 - Fly Ash
 - ESP Collector Plates
 - Filter Bags
 - FGD Waste Water
 - FGD Gypsum
 - FGD Oxidation

Ammonia Levels in Fly Ash after SCR plants

- Plant measurements reported levels of ~ 100 ppm NH₃ in fly ash at NH₃ gaseous slip levels of ~ 5 ppm
- High slip
 - Poor Measurements
 - Poor Distribution
 - Variable NOx Distribution
 - Catalyst Deactivation

Mercury Control

Mercury Control

Conventional Technologies

- SCR oxidation promotes collection by downstream equipment
- Particulate collectors
 - Capture by ESPs ranges from 5-50%
 - FFs capable of up to 50-90% capture
 - Sorbent injection can increase capture to 90+%
- DFGD/FF capture ranges from 50-95+% capture
- WFGD effective in collection of oxidized Hg
- Conventional APC equipment offers Hg capture ranging 10-90+%
 - Highly dependent on speciation
 - Costs well known

Mercury Control

Developing Technologies

- Sorbent injection
 - Lower cost sorbents
 - Higher capacity sorbents
- Post-combustion oxidation
 - Convert elemental to oxidized Hg
 - Developing technologies based on oxidizing agents, catalytic/electro-catalytic conversion
- Emerging and experimental technologies hold promise of high capture rates (>90%)
 - Performance/reliability risk
 - Cost risk
 - Timing of mandated reductions

- Elemental Hg is oxidized in SCR
- Easier to collect in downstream equipment
- Carbon injection for collection
- Carbon affects ash sales
- Carbon affects ESP collection

- Wet scrubber
 - May not be good for SO₃
- Dry Scrubber
 - Better for SO₃
- Will collect ammonia
- Ammonia products in FGD byproduct

SO₃/Visible Emissions

- Increasing concern
 - SCR impact
 - Fuel switching
 - Alternative fuels
 - PM_{2.5} standards
 - Regional haze
- Wet ESPs are available and effective, but costly
- Alternatives?
 - Gas-to-gas reheat
 - Condensing heat exchanger
 - Sorbent injection
 - Dry FGD

Agenda

- 1st topic
 SCR Description
- 2nd topic Issues with SCR
- 3rd topic Effect of SCR on Plant Systems
- 4th topic
 Effect of SCR on Pollution Control Equipment
- 5th topic Future Performance Requirements

CO₂ Capture Systems

- Need clean gas stream
- SO₂, SO₃, NO₂ are "poisons" for amines
- Particulate will foul liquid streams
- Mercury unknown but probably not good

