Key Factors in Activated Carbon Injection

Presented by Jamie Fessenden
Where are we now…

• Approximately 55-60 units injecting activated carbon for mercury control across the US and Canada.
• Approximately 50 units using CaBr2 injection.
• Mercury and Air Toxics Standard requires compliance in April 2015.
• Activated carbon is the accepted technology for meeting state and MATS mercury emissions limits
• New approaches, new technologies, and better carbons are under development.
Two pieces of the puzzle to consider

• Equipment Selection/Design
 – Key lessons learned
 – Key equipment

• Activated Carbon Selection
 – Understanding your unit & mercury
 – Selecting the right carbon
First step → define your problem

- Current Hg emission rate
- Required Hg emission rate

Does a solution that fits your unit and fuel choice(s) exist?

Testing is the best method to determine right solution for your unit(s)
Factors impacting equipment design and selection

• Design considerations
• Key lessons learned

Powder Activated Carbon is a unique material

• Abrasive
• Does not convey like other “powders”
• Will free flow like liquid when over aerated
Full Scale Testing – Hg

Best method to determine right solution for your unit

- Large focus on testing – now through MATS implementation
- Necessary to achieve the best, lowest cost solution for your units
- Longer term is better – short term/preliminary results can be misleading
- Work with testing company/engineering company to develop test plan – better plan = better results
- Use results to guide equipment design and carbon selection
Equipment Design Considerations

• Start with flue gas flow rate and PAC injection rate
 – Choose realistic injection rate
 – A large difference in design injection rates can negatively impact system design (turndown)

• Silo
 – Sizing: how many days storage/how many units served
 – Density of PAC varies based on raw material – ≈25 - 55 pcf
 – Truck/rail unloading system

• Feed train
 – 1 -3 per silo
 – Gravimetric vs volumetric
Equipment Design Considerations

- Control building
 - MCC, building, etc

- Controls Type
 - PLC, DCS, local controls

- Other considerations:
 - Roof slope
 - Dry instrument air (fluidizing air, bin vents)
 - Crane
 - Installation
ACI System Supplier Responsibilities

Design, fabricate, and pre-assemble a fully functional and operating system including:

• Silo system
 – Truck unloading
 – Fluidization system
 – Rotary valve

• Feed Train
 – Feeder type (gravimetric vs. volumetric)
 – Blowers (regenerative vs. PD)
 – Eductors
 – Control Instrumentation

• Injection System
 – Distribution Header
 – Injection Lance
Equipment – Key Lessons

Years of systems experience = several lessons learned:

• Rotary valve wear on gravimetric feeders – isolate rotary valve
Equipment – Key Lessons

- Pressure variations in gravimetric feeders lead to erratic feeder accuracy
 - Vent to avoid pressure build up
Equipment – Key Lessons

• High Eductor Inlet Vacuum
 – Install check valve to control inlet vacuum

• High wear on eductor discharge piping and elbows with skirted silo
 – Install wear resistant adapter to discharge piping
 – Minimize elbows and bends in transport piping
 – Use ceramic wrapped pipe at elbows and bends
Equipment – Key Lessons

• Diverter Valves
 – Short stagnant line off of the stream feed can plug
 – Mount diverter valves horizontally
Equipment – Key Lessons

- **Plugged Lances**
 - Lances prone to plugging when there is no air flow through them
 - Diverter valves should be open and blowers running while ACI system is shut down and generating unit is still operating
Key Factors in Activated Carbon Injection

Factors Impacting ACI

- Coal selection
- Air Pollution Control Device Configuration
- High SO3 applications
- Concrete compatibility
- Injection location
- Use of fuel/boiler additives
- Field Service/Optimization
Coal Selection

Coal Selection

• Source
 – Powder River Basin
 – Western Bituminous
 – Eastern Bituminous
 – Lignite

• Key Factors
 – Hg content, %S, ash, and halogen content

• Variability
 – Understanding variance of native mercury content
Air Pollution Control Devices

APC Devices + Coal Selection Impact Injection Rate

• Fabric Filter vs. Cold Side ESP
• SDA vs. WFGD vs. DSI
 – Impact of trona injection
 – Hg re-emission issues
 – Solutions exist – AC or use of an oxidant
 – SDA + FF results
• Impact of SCR
 – Hg Oxidation
 – SO2 to SO3 conversion
ACI with an ESP

Key factors using ACI with an ESP

• Temperature
 - performance declines above 350 F
 - affect moderated with brominated PACs
 - PAC does not work with HS-ESP

• Specific Collection Area (SCA)
 - square ft of plate area per 1000 acfm
 - typical SCA is 300 - 400, range is 100 to 800
ACI with an ESP

- PAC Distribution in the Duct is Critical
 - duct configuration to generate turbulence
 - PAC injection lance design
ACI with a Fabric Filter

Key factors using ACI with a Fabric Filter

• **Temperature Effects**
 - performance declines above 350 F
 - moderated with brominated PACs & baghouse design

• **Air-To-Cloth Ratio**
 - cubic feet of gas flow per square foot of bag surface
 - typical is 8 – 10, newer units may be 6
 - lower number means more contact time with PAC

• **Cleaning Cycle Times**
 - cycle times adjusted for optimum Hg removal using CEMs
ACI with a Fabric Filter

Key factors using ACI with a Fabric Filter

- PAC Distribution in Duct is Less Critical
 - PAC on the bags simulates a packed bed, better contact
 - PAC injection lance design less important
 - ductwork configuration less important
 - carbon is much more efficient than in ESP units
SO3 Laden Flue Gas

Three cases of SO3 laden flue gas:
- Native %S content of coal (Eastern Bituminous)
- SO3 injection for flue gas conditioning
- SO2 to SO3 conversion by SCR catalyst

No easy solution
- SO3 tolerant carbons in development
- DSI for SO3 control – can have other affects, such as trona interfering with oxidation of the mercury
Activated carbon influences fly ash used in concrete:

- Adsorption of air entraining agents (AEA)
- Concrete stability issues
- More variability in AEA needed

• Fly ash containing AC often not acceptable for concrete
 - LOI
 - Relative Foam Index too high
 - Color
Concrete Friendly Applications

• Relative Foam Index (RFI) used as reference measurement

• RFI is the amount of AEA required for a stable foam in concrete mixture

• Lower RFI the better – less AEA required, assume ≤6 for concrete compatible
Residence Time and Mixing are Key!

- **Pre-APH injection**
 - Mixing in air heater
 - Longer residence time

- **Post-APH injection**
 - Goal is long residence time
 - Mixing will not be as good, so may need to compensate with more injection lances
 - Proper lance design
 - CFD modeling is a good option to ensure proper mixing
Boiler additives, such as CaBr2, increase oxidation of elemental mercury.

- Low cost solution may be a combination of CaBr2 addition and standard activated carbon.
- Must be aware of possible BOP effects such as corrosion.
Field Service/Optimization

Optimization is an ongoing process:

• Utilize your activated carbon supplier to optimize your injection rate
• Upgrade/change carbons as better products come to market
• Focus on low cost solution/lowest total cost of ownership
Removing mercury from flue gas is a complex problem

Overcome this challenge by:

- Full scale testing – longer term is better
- Select and install a robust system
- Select the right activated carbon for your unit
 - Understand factors impacting selection
 - Optimize carbon usage