

Trends in Treating WFGD Effluent

Sharon Sjostrom 3-7-13

New Regulations → Updated Technologies

- Federal Effluent Guidelines
 - Last modified in 1982 (before many plants had installed advanced controls)
 - Revised guidelines expected on April 19, 2013
 - The proposed rule was formally received by the White House Office of Management and Budget (OMB) Jan. 15.
 - OMB reviews are supposed to take no more than 90 days (by executive order).
- National Pollutant Discharge Elimination System (NPDES) permit program through the Clean Water Act (CWA) amended in 1987

What Are the New Effluent Targets?

- FGD wastewater
 - Chemical precipitation,
 - Chemical precipitation with biological treatment
 - Chemical precip + biological + evaporation (ZLD)
- Fly ash and bottom ash transport water
 - Zero Discharge
- Leachate from ponds and landfills containing coal combustion residues
 - Chemical precipitation, or
 - Chemical precipitation with biological treatment

EPA Steam Electric Power Generating Effluent Guidelines Rulemaking, Feb 24, 2012

Guideline: Merrimack Station NPDES Permit

▶ BAT effluent limitations . . . "which . . . shall require application of the best available technology economically achievable . . ., which will result in reasonable further progress toward the national goal of eliminating the discharge of all pollutants"

http://www.epa.gov/region1/npdes/merrimackstation/

Proposed Merrimack FGD Wastewater Limits

	Daily Max	Monthly Average
Arsenic (µg/L)	15	8
Boron (µg/L)	Report	Report
Cadmium (µg/L)	50	Report
Chlorides (mg/L)	18,000	Report
Chromium (us/1)	10	Danast
	Daily Max	Monthly
	Daily Max	Average
Mercury (µg/L)		

http://www.epa.gov/region1/npdes/merrimackstation/

Mercury in WFGD

- Many plants rely on WFGD for mercury capture
- ► High ORP → less Hg associated with solids
- Halogens often added to coal to increase mercury capture in WFGD
- Bromine coal additives increase selenium in WFGD (decrease ash Se)

Selenium

- Selenium speciation is important
 - Selenite (Se[IV], Se⁺⁴) more toxic
 - Selenate (Se[VI], Se⁺⁶) more difficult to remove
- Se⁺⁴ can be removed through iron coprecipitation, Se⁺⁶ needs some bugs .. or more
- Forced oxidation WFGD may increase fraction of Se⁺⁶
- Upstream controls (DSI) may reduce Se load to WFGD

Expected Trends

If Merrimack is an indicator, low discharge limits may drive ZLD systems

Robert Wylie, Duke Energy, 2008

EPA Recommended Treatment Technologies

- Chemical precipitation and filtration
 - Remove the heavy metals, particularly mercury and arsenic
 - \$15 million for a 500 to 600 MW plant (EPRI: \$25 to \$50M)
- Chemical precipitation with biological treatment
 - Remove selenium, nitrates and sulfates
 - \$24 million for a 500 to 600 MW plant
- Chemical precipitation followed by "vaporcompression evaporation"
 - Evaporation in brine concentrator
 - Crystallized salts and dispose in a landfill
 - Recycle or evaporate all liquid (zero discharge)
 - \$50 million for a 500 to 600 MW plant (EPRI: > \$100M)

ZLD Options

Spray Dryer

ZLD Options

- ▶ Brine concentrator + crystallizer → landfill salts
 - Risk: salts are very soluble (leachable) and hydroscopic
 - High energy required to dry
- Stabilize Brines/Salts
 - Difficult due to mobility of metals
 - Mixing with other materials can increase mobility (including lime)
 - Options: Geopolymers with low leachability

Considerations for Discussion

- Regulations will drive technology choices
 - Effluent guidelines for pond leachate, strict NPDES permit trends, and unknown future CCR regulations may require new techniques to stabilize solids
- Removing and stabilizing selenium, halogens, and mercury may be challenging
 - Leaching protocols developed (LEAF) for more "realistic" evaluations
- New landfill management practices may be required
- Integrated APC management recommended to manage suite of compliance limits and operational impacts
 - Composite of technologies (air, water, and solids) may be required
 - No silver bullets
- Technology choices may limit fuel choices

Questions?