Worldwide Pollution Control Association

IL Regional Technical Seminar
August 3-4, 2010

Visit our website at www.w pca.info
WPCA

90% Mercury Removal – Control Technologies

Amy Evans – Marsulex Environmental Technologies
Ken Jeffers – Johnson Matthey Catalysts
Don Stowe – Babcock Power
Greg Bielawski – The Babcock & Wilcox Company

WPCA Regional Seminar
Springfield, Illinois
August 3, 2010
Man-made Sources of Mercury in the Environment – 2006

- Fossil Fuel Combustion (Primarily Coal) 67%
- Cement Industry 10%
- Non-Ferrous Metal Production 10%
- Pig Iron & Steel Production 7%
- Caustic Soda Production 5%
- Mercury Production 3%
- Gold Production 1%
- Waste Disposal 1%
- Other 1%
What we do know?

- Federal Mercury MACT Standard
 - 3/16/2011 To be proposed
 - 11/16/2011 Final rule
Houston Astrodome

A Hypothetical Example

- Dome filled with 30 billion ping-pong balls
- 30 black mercury balls
- Find and remove 27 balls for 90% Hg capture
 Lessons learned in the past

- **1970’s & 1980’s**
 - Sulfur dioxide
 - 500-3000 ppm SO₂
 - Early systems
 - 70%-85% capture
 - Very poor availability

- **1980’s & 1990’s**
 - NOx
 - 200-600 ppm
 - Early systems
 - low capture rates
 - High ammonia slip

- **2000’s**
 - Mercury
 - ~1 ppb
Coal Mercury Concentration

1999 coal production, ICR 2 data, by county

Chlorine in Coal

Chlorine (ppm, dry)

- <100
- 100 - 250
- 250 - 500
- 500 - 1,000
- 1,000 - 2,000
- 2,000 - 4,450

http://ugs.utah.gov/emp/mercury/index.htm
Mercury Speciation by Fuel Type

Flue Gas Speciation

- Bituminous
- Subbituminous
- Lignite

Elemental Hg vs. Oxidized Hg

Influences on Hg Speciation

- Gas Composition (i.e., Chloride)
- Unburned Carbon (UBC)
- Catalysts (i.e., SCR, Ash, Boiler Metals)

2000 Data per NETL at 2002 EPRI Workshop

Proprietary and Confidential © 2010 Babcock & Wilcox Power Generation Group, Inc. All rights reserved.
Power Plant “Co-benefits”
Reduce Stack Mercury Emissions
Mercury Control Options

- **MercPlus™ (Hg+) System**
- **Pulverizer**
- **Boiler**
- **SCR**
- **Air Heater**
- **SO₃ Sorbent Injection**
- **Dry FGD**
- **PAC Injection**
- **TOXECON**
- **TOXECON II**
- **ESP**
- **Wet FGD**
- **PJFF**
- **Absorption Plus (Hg)™ System**
90% Mercury Removal – SCR Effects

Ken Jeffers – Johnson Matthey Catalysts

WPCA Regional Seminar
Springfield, Illinois
August 3, 2010
Hg Oxidation across SCR Catalyst

WPCA Illinois Technical APC Seminar
Springfield, IL
August 3, 2010

Ken Jeffers
SCR Applications Engineer
Introduction – Mercury Emission Control from Coal-fired Sources

- Hg speciation
 - H^0 – elemental mercury
 - Hg^{2+} – oxidized mercury
 - Total – Hg^T includes Hg^0, Hg^{2+}, Hg^P
 - Strong influence on speciation by Cl/Br in flue gas

- Basic Capture/Removal Methods
 - Activated Carbon Injection, baghouse – Hg^0/Hg^{2+}
 - Novel Sorbents, baghouse – Hg^0/Hg^{2+}
 - Capture in wet-FGD – Hg^{2+} (water soluble, easier to absorb)

- Hg oxidation is a co-benefit of SCR catalyst
 - ***SCR catalyst does not capture or remove Hg***
 - Challenging as Hg is in trace amounts ~ ppb, µg/Nm3
 - Hg^{2+} can re-emit to Hg^0 downstream of SCR
Reactions of Hg in SCR Catalyst

Desired Reactions – Hg oxidation
• Hg + 2 HCl + ½ O₂ → HgCl₂ + H₂O
• Hg + SO₃ + ½ O₂ → HgSO₄

Side Reactions
• 2 HCl + ½ O₂ → Cl₂ + H₂O
• Hg + Cl₂ → HgCl₂

Undesired Side Reactions
• Cl₂ + SO₂ + H₂O → 2 HCl + SO₃, inhibition of Cl₂ formation
• 3 HgCl₂ + 2 NH₃ → 3 Hg + 6 HCl + N₂, reduction of Hg by NH₃
• HgCl₂ + SO₂ + H₂O → Hg + 2 HCl + SO₃, reduction of Hg by SO₂
Key Variables for Hg Oxidation in SCR Catalyst

- Flue gas Chlorine concentration (HCl/Cl−)
 - Influences speciation at SCR inlet \(\rightarrow\) high Cl, increases Hg2+ in Hg\textsubscript{T}
 - 50+ ppm HCl in flue gas \(\rightarrow\) 80 – 90%+ Hg oxidation
 - Similar effect for 5+ ppm Bromine
 - Lower oxidation rates for low Cl fuels (PRB, low Cl bituminous)
- Flue gas Temperature \(< 700 \, ^\circ F\) favorable for Hg oxidation
- Ammonia competes for active sites in catalyst and inhibits Hg oxidation
 - NH\textsubscript{3}-NO\textsubscript{x} reaction favored in top catalyst layer(s)
 - Hg oxidation favored in lower catalyst layers as NH\textsubscript{3} is depleted
 - Filling spare catalyst layers good for Hg oxidation
Hg Oxidation in Catalyst – General Effect of Cl

Reproduced by permission from *Effects of Chlorine and other Flue Gas Parameters on SCR Catalyst Mercury Oxidation and Capture*, EPRI, Palo Alto, CA 2009. 1020591
Hg Oxidation in Catalyst – General Effect of NH₃

Reproduced by permission from Effects of Chlorine and other Flue Gas Parameters on SCR Catalyst Mercury Oxidation and Capture, EPRI, Palo Alto, CA 2009. 1020591
Hg Oxidation in Catalyst – Effects of Temperature and Cl

Hg = 1015 µg/Nm³

Hg_{ges} = 10 – 15 µg/Nm³
Thank You!

Ken Jeffers
SCR Applications Engineer
ken.jeffers@jmusa.com
678 341 7523

Johnson Matthey Catalysts, LLC
1121 Alderman Drive, Suite 204
Alpharetta, GA 30005
www.jmcatalysts.com
90% Mercury Removal – Activated Carbon

Don Stowe – Babcock Power

WPCA Regional Seminar
Springfield, Illinois
August 3, 2010
90% Mercury Capture;
Can we get there?

Don Stowe, Consultant – Babcock Power

www.babcockpower.com
No Single Answer
Each unit is site specific

- Fuel
- Boiler type
- Plant layout
- Background Hg Capture (high LOI ash)
- Existing APC devices (co-benefits)
Similar Patterns Found to Hold for Hg Capture by Activated Carbon
(Most data from tests <1 month)

- WC, FF or TOXECON
- WC, ESP
- LSEB, ESP
- HSEB, ESP

| WC = Western Coal |
| LS = Low Sulfur |
| HS = High Sulfur |
| EB = Eastern Bituminous |

© 2005 Electric Power Research Institute, Inc. All rights reserved.
Co-Benefits

- **SCR**
 - Reasonable job of oxidizing Hg
 - Also Oxidizes SO$_2$ to SO$_3$
- **Wet FGD**
 - Good job of capturing oxidized Hg
- **Spray dryer/Fabric filter**
- **CDS technology**
Easy Answer is NOT the best answer

- Install baghouse/PAC injection
 - Most expensive
 - $80-130/KW capital investment
 - Additional parasitic load
 - Not practical at many installations
 - Space constraints
 - Fan capacity
What do we know?

- PAC extremely effective for capturing oxidized Hg
- PAC does poorer job of capturing elemental Hg
- PRB flue gas predominantly elemental Hg
- SO$_3$ proven to “poison” PAC
Carbon has the adsorption capacity
- Fixed bed data – Hg loading up to 10%
 - 100,000 µg/g
- Typical real world adsorption
 - 20-40 µg/g

Challenge is kinetics (assure Hg contacts carbon)
Hg Adsorption
Fixed Bed
Commercial PAC

HgCl$_2$

mg Hg ret/g PAC

Typical reaction time \leq 1 sec.

Source: UK CAER
Criteria for success

- Oxidation of Hg (bromine)
 - Coal blending
 - Furnace injection of oxidant
 - PAC/Br blends
- Elimination of “poisons” (SO3)
 - Trona/Hydrated Lime/Magnesium Oxide
 - Pre-blended PAC/alkali
 - Upstream alkali injection
- Selection of most cost effective carbon
 - Pore size critical parameter
 - Low ash
 - Low moisture
Other possible means of improvement

- Reduce carbon particle size
 - Finer grind
 - Material handling issues
 - ESP “blow-by”
 - On site micronizing
 - Expensive / high maintenance

- Increase residence time
 - Install baghouse (Toxicon)

- Improve dispersion/mixing
 - CFD
 - Physical Modeling
 - Install mixing device
Babcock Power Capabilities

- Design/engineer PAC dosing systems
 - CFD
 - Physical flow modeling
 - Delta Wing static mixer
- Low cost lignite based carbon – HOK
 - Bromine impregnated
 - Sulfur impregnated
 - Alkali impregnated
Effect of Delta-Wing®
Delta Wing
Full Scale Installation

[Image of a construction site with metal framework and cranes in the background.]
A6

800 mw
duct between X and Y
dimensions -
gas flow-

Author, 7/29/2010
The road to success

- Every unit is site specific
- Remove carbon “poisons” – SO3
- Oxidize Hg
- Put PAC in contact with oxidized Hg
 - Physical modeling
- Evaluate low cost PAC
PAC Evaluation

- Ultimate answer by testing
 - Lbs/hr required x $/lb
- Data suggest most brominated perform similarly as well as non-brominated
- Ineffective measuring sticks
 - BET surface area
 - Bromination method
Hg-Breakthrough curves (detail) \((60 \text{ m}^3/(\text{m}^2\cdot\text{h}), 150 ^\circ\text{C}, 1030 \text{ mbar})\)
Thank You
90% Hg Removal with Wet or Dry FGD Systems
by
Greg Bielawski

WPCA Regional Seminar
Springfield, Illinois
August 3, 2010
B&W’s Wet FGD
Mercury Control Options

CaCl$_2$ Injection (if needed)
PAC Injection (if needed)

FGD Injection (if needed)
Industry Challenges

- Hg re-emission in WFGDs
- PAC poisoning when burning high sulfur coal
Absorption Plus (Hg)™ System for Enhanced Mercury Capture

- Proprietary technology prevents mercury re-emission from Wet FGD
- Removes and retains over 95% of oxidized mercury in FGD
- Mercury removed with solids from FGD system
- Cost effective reagent
Wet FGD Reagent Feed System

Injection Skid

Feed Location
E.ON America’s Mill Creek Unit 4
Louisville, KY

- 2007 DOE/EERC Phase III Mercury Testing
- B&W Wet FGD additive Absorption Plus(Hg)™
- Mill Creek burns *high sulfur* bituminous coal
- Air quality control system consists of SCR + ESP + Wet FGD
E.ON. Mill Creek
Mercury Control Tools
E.ON Mill Creek WFGD Outlet

B&W WFGD Additive

Absorption Plus @ 60 gph

Hg° re-emission

Mercury Concentration, µg/dsm³

7/11/07 0:00 7/11/07 4:00 7/11/07 8:00 7/11/07 12:00 7/11/07 16:00 7/11/07 20:00 7/12/07 0:00
Powdered Activated Carbon Storage and Feed System

PAC Storage Silo

Feed System

Injection System
Industry Challenges

Hg re-emission in WFGDs

PAC poisoning when burning high sulfur coal
Influence of SO_3 on Mercury Removal with Activated Carbon
Dry Sorbent Injection (DSI) Technology Overview

- DSI = Dry Sorbent Injection
- DSI is based on dilute phase pneumatic conveying technology
- Major components are:
 - Truck/rail unloading
 - Silo
 - Weigh hopper/Rotary feeder
 - Transport Air Blowers
 - Reagent milling (optional)
- Not a new technology
 - Used for SO₂ since 1980s
- Current applications for SO₂, SO₃, HCl and Hg
- B&W mobile test unit available
Texas Genco, Parish Plant – Sub-bituminous Coal

- 650 MW SCR / FF / Wet FGD
- Low Chlorine PRB Coal
- Limestone Wet FGD for SO$_2$ Control
MercPlus™ Fuel Additive for Low Halogen Coals

- Injected onto coal in coal feeders
- Increases oxidation of elemental mercury
- Co-benefits Hg removal with FGD
- Reduces or eliminates PAC consumption
- May allow use of standard PAC versus more costly brominated PAC
- Typical payback less than one year by reducing PAC consumption
Additive Injection Skid and Tank
Total Mercury Removal Across Wet FGD Scrubber

- **CaCl$_2$ Only**
- **Wet FGD Additive Alone**
- **CaCl$_2$ and Wet FGD Additive**

<table>
<thead>
<tr>
<th>Condition</th>
<th>0 ppm</th>
<th>200 ppm</th>
<th>400 ppm</th>
<th>500 ppm</th>
<th>600 ppm</th>
<th>9 gph</th>
<th>22 gph</th>
<th>200 ppm+9 gph</th>
<th>400 ppm+29 gph</th>
<th>500 ppm+4 gph</th>
<th>600 ppm+10 gph</th>
<th>600 ppm+30 gph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>30%</td>
<td>70%</td>
<td>90%</td>
<td>95%</td>
<td>96%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaCl$_2$ Only</td>
<td></td>
</tr>
<tr>
<td>Wet FGD Additive</td>
<td></td>
</tr>
<tr>
<td>CaCl$_2$ and Wet FGD Additive</td>
<td></td>
</tr>
</tbody>
</table>
B&W’s Dry FGD
Mercury Control Options

- CaCl₂ Injection (if needed)
- Coal Preparation
- PAC Injection
- SDA
- FF or ESP
MercPlus™ Fuel Additive for Low Halogen Coals

- Injected onto coal in coal feeders
- Increases oxidation of elemental mercury
- Co-benefits Hg removal with FGD
- Reduces or eliminates PAC consumption
- May allow use of standard PAC versus more costly brominated PAC
- Typical payback less than one year by reducing PAC consumption
Powdered Activated Carbon Storage and Feed System

PAC Storage Silo Feed System Injection System
Black Hills Power – Wygen 1 Sub-bituminous Coal

- Nominal 80 MW Unit
- Wyodak Mine Coal
- B&W Opposed Wall-Fired Boiler
- SCR
- B&W SDA and PJFF
Wygen 1 Mercury Controls
Wygen 1 Parametric Mercury Tests

- Total Hg Removal (%)

- Baseline
- Baseline
- 230 ppm
- 400 ppm
- 690 ppm
- 2 lb/Macf
- 5 lb/Macf
- 230 ppm + 2 lb/Macf
- 400 ppm + 2 lb/Macf

© 2010 Babcock & Wilcox Power Generation Group, Inc. All rights reserved.
Thank You!