Worldwide Pollution Control Association

IL Regional Technical Seminar September 13-15,2011

Visit our website at www.wpca.info

Using Dry Sorbent Injection to Meet the Utility MACT

Curt Biehn Mississippi Lime Company

Overview

- Regulatory
- Options for Dry Sorbent Injection
- SO₃ and HCl removal rate examples
- Material Handling

Regulatory Reasons for Acid Gas Mitigation (Pre-MACT)

Offset additional SO₃ generated from SCR installation

Control blue plume at stack from Wet FGD

addition

Appearance

Local concerns

Regulatory Acid Gas Mitigation Outlook

- Consent decree on Acid gases
 - -Specified amount at the stack
 - Limitations of Method 8A
- Particulate
 - -0.030 lb/MM Btu (filterable and condensable)
- HCl as acid gas surrogate
 - −0.002 lb/mmBTU (~3ppm)
- Consistency and OST of mitigation system will be critical

Regulatory Options to meet requirements

- Fuel switch
- Equipment additions
 - -Wet ESPs
- Dry scrubber
 - -Unit size
 - -Fuel

Dry Sorbent Injection

Many will opt for some form of alkaline injection to neutralize the acid gases

Regulatory Most commonly selected options for DSI

- Hydrated lime
 - -High BET surface area (> 20 m²/g)
 - -Fine particle size (D_{50} of 2-4 microns)

- Trona
 - -Larger particle size (40-60 microns)
 - ➤On site milling to 15-25 microns

Questions to answer

- Where are you and where do you have to get with pollutants?
 - -Potential side benefits of acid gas mitigation
- What will your injection system look like?
 - -Expectations on Operations and Maintenance
- Implications of sorbent choice
 - -Supply
 - Logistics
 - -Ash

Removal - Consider working your way backwards Example for SO₃ mitigation

Stack limit: 5 ppm maximum

Removal

Consider additional benefits of early removal

- Pre-SCR
 - Minimum operating temperature
 - Reduce arsenic poisoning of catalyst (calcium)
- Pre-APH
 - Corrosion protection
 - ABS control
 - Heat rate
- Particulate collection
 - Corrosion
 - Operational
- Wet FGD
 - Corrosion
 - Effects of HCl on scrubber and wastewater treatment

ESPs - "It depends..."

- Some SO₃ aids resistivity of ash
- Ash resistivity
 - Sodium reduces; Calcium increases
- Unit specific issues
 - Existing ash properties
 - ESP size and efficiency
 - > Particulate loading with added sorbent
 - Residence time
 - >Short -> more sorbent
 - Manage with split injection?
 - Best to test

Courtesy B&W

- Lodge Cottrell presentation from 2011 APC conference
 - Reinholdenvironmental.com library section

Air Preheater

Moving sorbent injection up in the process offers additional benefits:

Courtesy BreenES

- Better utilization of sorbent
 - Longer reaction time
- APH operation
 - Eliminate ABS buildup from ammonia slip
 - Flexibility on SCR operation
- Lower heat rate
 - Reduce acid dew point through APH

Using Sorbent Prior to APH

- Neutralization of SO₃ will occur at Pre-APH temperatures
- Sodium sorbents:
 - Byproducts and intermediates can form without temperature and concentration control
 - URS reported on Pre-SCR injection of SBS

APH after 8 week trial of PreAPH hydrate injection

- Calcium sorbents
 - No issues with reaction byproducts or intermediates
 - Multiple trials of Pre-APH since '09
 - Utility Pre-APH since 2010
 - ➤ No issues reported

Hydrated Lime Data Pre-APH removals from 2009 trial

- Injection of hydrate at SCR outlet
 - -2 sec residence time before first Breen probe (Pre-APH)
 - -Post-APH Breen probe
- Took periods of stabilized operation of feed system and boiler
 - -Varied from 1-24 hours
 - -Averaged data from Breen probes
 - Hydrate feed rates varied
 - Stoich ratios from 3 to 6 mol Ca/mol SO₃
 - Unit load varied as well

Demonstrated Reductions Using In-line Breen Probes

- Good reduction from injection point to Pre-APH measurement point
- In-flight capture results are very good

		SO ₃ (ppm)		% Reduction		
_		Pre-APH	Post-APH	Pre-APH	Thru APH	Overall In-flight
	baseline	31.5	22.5	0%	28%	28%
	With hydrate treatment	2.7	< 	>90%	<10%	>96%
		2.9	<	>90%	<10%	>96%
		3.8	<	>85%	<10%	>96%
		4.4	1.1	>85%	<10%	>96%
		3.2	<	>90%	<10%	>96%

Removal Rates

Full Scale SO₃ Mitigation with Hydrated Lime

Stack to Stack Removal Rates

SO₃ Mitigation with Hydrated Lime Individual Examples

Plant	Location	SO ₃	SO ₃	mol Ca: mol SO ₃	lb Ca∶lb SO₃	Removal
		APH	Untreated Stack			Stack
550 MW	Pre-Wet FGD	20 ppm	I2 ppm	4.2 : I	3.9 : 1	92%
1300 MW	Pre-ESP	30 ppm	20 ppm	4.2 : I	3.9 : I	83%
704 MW	Post-ESP	35 ppm	21 ppm	3.8 : I	3.5 : I	83%
1150 MW						

Case Study - High Opacity with pre-ESP injection

- Cold side ESP not capable of handling of sorbent injection / increased loading
 - Cyclone-fired boiler
 - ➤ ESP designed for ~20% fly ash
 - Sorbent injection increases ash by another 5%
 - Overwhelms ESP (since designed for low fly ash loading)
 - Opacity concerns
- Injected hydrated lime post ID fan, <u>after</u> the ESP
 - Achieved good removal of SO₃
 - Stack particulate emissions were not negatively affected

Load (MW)	NSR	Stack Particulate (lb/MMBtu)	
1039	2.54	X	
1030	4.75	0.40×	

Baghouse Removal Data

- Midwestern Utility; med-high sulfur coal
- Injection post APH using temporary injection system
- Test runs measured at baghouse outlet

	Content, ppm		Reduction	
	SO ₃	HCI	SO ₃	HCI
baseline inlet	25	24		
baghouse outlet	16	22.5	36%	<10%
Ib Ca: Ib SO ₃				
2.15	4.9	21.9	80%	<10%
2.70	1.4	24.7	94%	<10%
3.24	<	< 	98%	>98%

Reduced sorbent usages vs ESP

Lower emissions

Baghouse Follow-up Testing Mercury and HCI

- Hg Removal = ~ 40% removal from coal to Particulate
 Collection outlet (no carbon injection)
 - 3% LOI
 - Baseline (no hydrate injection, 2008): No Hg removal with 10%
 LOI
- HCl Removal (SCR outlet ~45 ppm Cl)
 - Under typical conditions of 3 4 Ca / S ratios, little HCl removal was detected
 - On over-injection conditions (mid-load, high Ca / S ratios), some
 HCl removal in flight was detected, about 20 30 %.
 - Similar to results from a Southern Co. test program at Mercury Research Center

Hydrated Lime for HCI Removal Trial at Shawnee

Summary from report by Brian Williams (TVA) to PCUG, July 2011

Hydrated Lime Injection Demonstration Goals

- Low Cost HCl Control Desired to Avoid Expediting Scrubber Installation
- Hydrated Lime Injection Testing Program Chartered to:
 - Determine if Hydrated Lime Injection System can Achieve Proposed HAPs HCI Limits
 - Evaluate BOP Impacts on Baghouse and Ash Removal System if Lime Injection Reduces HCI Emissions
 - Evaluate Additional Total Particulate Margin Recovered from Reduced Condensable PM
 - Provides Filterable PM Margin to Allow Maximum Usable Bag Life (current bag life ~ 8 years per unit)
- CHALLENGING TEST The Last Few PPMs Are The Hardest To Remove

Project Overview and Regulatory Drivers

Shawnee Plant Background

- Nine (9) I50-MW wall-fired units equipped with Baghouses
- Currently Burning up to 50% PRB Blended with Low Sulfur Colorado Coal
- Unit 6 Holds National Continuous Run Record of 1,093 days set in 2006

Emission	Proposed HAPs Limit	Shawnee U6-10 Stack Baseline (05/2011)
Total Particulate (lb/MMBTU)	0.03	0.016 Total 0.004 filterable 0.012 condensable
Mercury (lb/TBTU)	1.0	< 0.5
Acid Gas Surrogate - SO ₂ OR HCl (lb/MMBTU)	0.2 SO ₂ OR 0.002 HCl	0.63 SO ₂ 0.003 HCl

Emissions Control

- HCl controlled, especially after one day seasoning of baghouse
- No balance of plant impacts in baghouse operations
- Particulate emissions reduced by 44%

Hydrate Injection Rate	HCI (Ib/MMBTU)	HF (lb/MMBTU)	H ₂ SO ₄ (ppmvd)
0 lb/hr - Baseline	0.0030	0.0045	1.3
350 lb/hr	0.0005	0.0006	0.37
350 lb/hr	0.0007	0.0007	0.35
300 lb/hr	0.0008	0.0006	0.35

Objective 2 - Balance of Plant Impacts

Baghouse and Ash System Performance – No Issues Identified

- Full Pressure Loss Recovery Achieved (~4.4 in H₂O,g)
- The DP Cleaning Cycle Dwell Time Shortened (~ 2hrs to ~1.5 hrs) as expected
- No Ash Handling System Impacts (Hoppers Pulling Empty)

Conclusions and Path Forward

- Shawnee can achieve compliance with proposed HAPs regulations via a low cost hydrated lime injection system
 - Postpones unit idling/retirement or FGD installation.
- Hydrated Lime System
 - Can later be used with SCR installation to mitigate SO₃
 - Consider longer term (~2 month) demonstration on temporary system with HCI CEMS
 - Longer-term BOP issues
 - Process variability to minimize project and operational risk.
- Consider Clean Air Strategy changes at other sites slated for dry scrubbers.

Material Handling

Dense vs. Dilute Phase Conveying

- Dense Phase Conveying
 - -Material:Air of 99 to 6.2 (two phase) or 1,239 to 62 (piston) lbs material/lb of air
 - -Truck Unloading
- Dilute Phase Conveying
 - -Material: Air 6.2 to 0.10 lbs material/lb of air
 - Pneumatic Injection Systems

System Installation

- Wet air
 - Conveying
 - Rotary Airlock seals
- Piping joints
 - Shelf
- Field modifications
 - Added bends

J. Wilson, DHUG, 2010

Design Challenges – Understanding Air Dilute Phase Systems

- Flue coverage
 - High # of injection lances
- Two sorbent option
 - Different properties and system requirements
- Alternate fuels
 - Oversized equipment
- Inflexible equipment
 - Single speed blowers
- Conveying distance and pathway
 - -# of bends require increased air

Questions

Curt Biehn
3870 S. Lindbergh Blvd.
Suite 200
St. Louis, MO 63127
crbiehn@mississippilime.com
Office: 314.543.6309

www.mississippilime.com

Possible Explanations for Reduced PM Measured During Hydrated Lime Testing

- Triboelectric theory (Observed at Widows Creek, etc.)
 - Friction causes particles to become charged
 - One material positively charged, other material negatively charged
 - Fly ash (alumina and silica oxides) are typically negative
 - Hydrated lime, pneumatically conveyed, should be positive
 - Opposite charges attract, agglomerating fine particulate
- Measurement of Condensables on Particulate Filters (at Paradise)
 - Prescribed filter bake times do not eliminate all acid condensables
 - Baseline PMs include high acid concentrations
 - Hydrated lime injection PMs reduce acid on filters, lowering PMs
 - Combination of the above and other unknown effects