Worldwide Pollution Control Association

Dry Scrubbing
O&M Training

APC/PCUG Conference
July 12-16, 2009
The Woodlands, TX

Visit our website at www.w pca.info
Spray Dryer Absorber O&M Considerations

WPCA Dry Scrubbing O&M Seminar
The Woodlands, Houston, TX
July 12, 2009
SDA Operations & Maintenance

- Key SDA Operating Considerations
- Boiler Load Following and Ramping
- SDA Byproduct Properties
 - Fly Ash Pre-Collection Impacts
- SDA Byproduct Handling Systems
- Process Upsets
- Troubleshooting Tools and Experience
Typical SDA Control Concepts

Instrument verification is critical for optimal performance.

- **SO₂ Emission Setpoint**
- **SO₂ Monitor**
- **Recycle Slurry Solids Setpoint**
- **Density Monitor**
- **Recycle Solids**
- **H₂O**
- **Lime**
- **H₂O**
- **Slaker Temperature Setpoint**
- **TCs**
- **Absorber Outlet Temperature Setpoint**
- **Flow Feed Forward**

Proprietory and Confidential © 2009 The Babcock & Wilcox Company. All rights reserved.

WPCA DFGD O&M 07_12_09
Important Control Considerations

• SDA outlet temperature response time
• Safe operating temperature is function of slurry solids loading
• Maintain margin above saturation
• “Chemistry” generally not used for process control
 • Byproduct moisture
 • Cl in byproduct
 • Conductivity of recycle slurry
What Determines SDA Consumables?

Lime Use

Inlet conditions, lime and water quality and required performance

Pressure Drop

Flue gas flow and conditions, arrangement, SDA selection, FF design and operation

Power Consumption

Gas flow and temperature, slurry solids loading and flow

Water Use

Gas flow and temperature, spraydown
Typical Lime Specification

- **High calcium quicklime (CaO)**
- **Particle Size**

 ¾ inch x 0 with no more than 50% less than 10 mesh
- **Availability**

 90% CaO or greater per ASTM C25
- **Reactivity**

 40°C temperature rise or greater in 3 minutes
 Total temperature rise in 10 minutes max
 ASTM C110
- **Chemical Analysis**

 - CaO: 90 – 98 wt.%
 - MgO: 0.5 – 1.5 wt.%
 - Inerts: 10% max
 - LOI: 1.5% max
Pebble Lime Handling Considerations

• Design for minimizing particle break-up in transport
 • Minimize transport distance
 • Long sweep elbows
 • Silo target box design
• Size slaker feed for expected particle size distribution at feeder rather than delivered lime specification
• Provide for slaking water heating to optimize slaker performance
Load Ramping

- **Increasing load** – increase lime slurry flow in manual control ahead of load
- **Automatic control - feed forward**
 - Stack gas flow or MW output - too late
 - Flue gas temperature - too variable
 - “Compensated” coal flow recommended
- **Avoid “valves wide open” operation**
- **Rapid load drop**
 - May see solids drop out in SDA w/o a solids handling system under SDA
- **Emissions averaging period considerations**
SDA Byproduct Considerations

• No “byproduct quality control” step in the SDA FGD process as incorporated in WFGD gypsum production

• Trace elements from coal, flue gas, lime and process water streams end up in byproduct

• Byproduct quantity and composition does not vary widely over normal anticipated range of SDA operating conditions
Byproduct Generation Rule-of-Thumb

Ratio of lb byproduct solids / lb SO₂ removed

2.5 to 3.0

• Excluding fly ash
• 2.5 is good first estimate for Western coals
• 0.2 to 1.0 % S in coal
• 90 to 94% SO₂ reduction
SDA Operation Impact on Byproduct Solids

Increase SO₂ removal by increasing lime use

<table>
<thead>
<tr>
<th>% Removal</th>
<th>Byproduct Solids</th>
<th>% Ca(OH)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-2.5%</td>
<td>0.09</td>
</tr>
<tr>
<td>85</td>
<td>-1.3%</td>
<td>0.16</td>
</tr>
<tr>
<td>90</td>
<td>Base</td>
<td>0.27</td>
</tr>
<tr>
<td>95</td>
<td>+1.5%</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Reduce lime use by lowering temperature

<table>
<thead>
<tr>
<th>Approach Temperature</th>
<th>Byproduct Solids</th>
<th>% Ca(OH)₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>-0.3%</td>
<td>0.14</td>
</tr>
<tr>
<td>30</td>
<td>-0.2%</td>
<td>0.20</td>
</tr>
<tr>
<td>35</td>
<td>Base</td>
<td>0.27</td>
</tr>
<tr>
<td>40</td>
<td>+0.2%</td>
<td>0.37</td>
</tr>
<tr>
<td>45</td>
<td>+0.4%</td>
<td>0.47</td>
</tr>
<tr>
<td>50</td>
<td>+0.6%</td>
<td>0.60</td>
</tr>
</tbody>
</table>

35°F Approach Temperature

90% SO₂ Removal
Fly Ash Pre-Collection

ESP

SDA

BH / ESP

Lime

Recycle Solids

H$_2$O

H$_2$O

Fly ash Pre-Collection
Solids Mass Balance w/o Pre-Collection

11.56 gr/acf

1.29 gr/acf

Fly ash
16,537 lb/hr

SDA

 BH / ESP

Disposal / Utilization
20,651 lb/hr

Recycle Solids
107,025 lb/hr

CaO
1,681 lb/hr

92% SO₂ Removal

By-product / Recycle Solids Composition (wt. %)

<table>
<thead>
<tr>
<th>Fly Ash</th>
<th>79.75</th>
<th>Inerts</th>
<th>0.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Water</td>
<td>1.00</td>
<td>Crystal Water</td>
<td>1.77</td>
</tr>
<tr>
<td>CaSO₃</td>
<td>13.25</td>
<td>CaSO₄</td>
<td>2.73</td>
</tr>
<tr>
<td>CaF₂</td>
<td>0.00</td>
<td>Ca(OH)₂</td>
<td>0.34</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.16</td>
<td>CaCO₃</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Solids Mass Balance with Pre-Collection

- **Fly ash**: 165 lb/hr
- **Disposal / Utilization**: 4,313 lb/hr
- **92% SO₂ Removal**

By-product / Recycle Solids Composition (wt. %)

<table>
<thead>
<tr>
<th></th>
<th>Fly Ash</th>
<th>Free Water</th>
<th>CaSO₃</th>
<th>CaF₂</th>
<th>CaCl₂</th>
<th>Inerts</th>
<th>Crystal Water</th>
<th>CaSO₄</th>
<th>Ca(OH)₂</th>
<th>CaCO₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>4.28</td>
<td>1.00</td>
<td>62.70</td>
<td>0.00</td>
<td>0.76</td>
<td>4.55</td>
<td>8.37</td>
<td>12.91</td>
<td>3.91</td>
<td>1.53</td>
</tr>
</tbody>
</table>
SDA Byproduct Solids

Without Ash Pre-collection

With Ash Pre-collection
SDA Byproduct - Key Material Properties

<table>
<thead>
<tr>
<th></th>
<th>No pre-collection</th>
<th>Fly ash pre-collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Average</td>
</tr>
<tr>
<td>Particle Size, D90 μm</td>
<td>34 – 71</td>
<td>47</td>
</tr>
<tr>
<td>Particle Size, D50 μm</td>
<td>3 – 16</td>
<td>6</td>
</tr>
<tr>
<td>Particle Density, bulk density lb/ft³</td>
<td>37 – 42</td>
<td>39</td>
</tr>
<tr>
<td>Particle Density, tap density lb/ft³</td>
<td>61 - 71</td>
<td>64</td>
</tr>
</tbody>
</table>

Comparison based on limited fly ash pre-collection sample data
Fly Ash Pre-Collection Impacts

• Need byproduct handling system flexibility
 • Capacity with pre-collector out of service
 • Range of material properties expected
• Changes nature of the solids
 • Composition – relatively higher Ca(OH)$_2$ and CaCl$_2$
 • Shape – irregular shapes result in higher void fraction and more interlocking
 • More tendency to cake, but fluidizes easily on aeration
Byproduct Handling – Vacuum System
Byproduct Handling – Pressure System
Byproduct Handling – Vacuum/Pressure System
Byproduct Handling System Comparison

<table>
<thead>
<tr>
<th>System Feature</th>
<th>Vacuum</th>
<th>Vacuum/Pressure</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower hopper area headroom Required</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Long ash material transport distance</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Lower initial cost</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less hopper area housekeeping</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Higher ash loading capacity</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Simplified silo/collection Equipment</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Fewer moving parts, less life cycle maintenance</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Byproduct Handling System Considerations

- Conveying velocity 10 to 20% higher than fly ash system
- Good experience with straight drop through valves
- Pre-heat conveying lines – maintain warm lines when not transporting solids
- Rubber elbows in transport lines can help prevent build-up
- Consider insulating transport lines
Byproduct Disposal

• Pug mill conditioner
 • Water added at 12 to 25% by weight with free lime a factor in determining optimal moisture
 • With fly ash pre-collection – may need to add ash back in to the mix to stabilize
• Non-stick surfaces to reduce build-up
Process Upsets You May Encounter

• Low recycle slurry solids
 • Adjust SDA operating conditions to maintain good drying
• Loss of recycle slurry feed
 • Design for lime only operation
• Low SDA inlet temperature
 • May limit ability to add sufficient reagent
Troubleshooting Tools and Experiences

- Tools to verify operating conditions
- Use of thermal imaging
- Temperature distribution mapping
Slurry Solids Moisture Balance
Moisture Balance Uses

Dry & Weigh Scale
- Confirm lime slurry solids (105°C, < 1mg/60sec)
- Confirm recycle slurry solids (85°C, < 1mg/60sec)
- Measure slurry and water TDS
- Measure recycle ash moisture content

Weigh Scale
- Check slurry density measurement.
- Confirm solids specific gravity constants programmed into density monitor
Wet Bulb Temperature Measurement
Wet Bulb Temperature Variability

Stack Twb Vaisala/Wick = 127F/129F @ 1700

HydroBlasters

IK's 13/16, 22/26

IK's 11, 17, 18, 19
Infrared Thermography
SDA Spray Chamber
Baghouse Following SDA
Baghouse Ash Valve Heat Tape
Baghouse Ash Valve and Transport Line

\[P_0 = 69^\circ F \]
\[A_1 = 79^\circ F \]
\[A_2 = 112^\circ F \]
Confirm SDA Vessel Drying Profile

Tin - Tout - Tas
269F - 163F - 38F

Tmax - Tavg - Tmin - Feed Solids
168F - 165F - 160F - 40.3%

MAXTref
-2F

Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7
Things That Can Sneak Up On You

• Change in water quality
 • Strainer, cooler and cooling water line pluggage
 • Screen blinding
• Fuel change
 • May need to modify operations if significant change in Cl
• Difficulty in maintaining slurry solids
 • Leaking flush valves
 • Excessive screen wash or loss of nozzle
• Excessive flushing
 • Longer and higher pressure flushing is not necessarily a good thing
• Instrument calibration
Key Spare Parts to Consider

- Atomizer assembly
- Miscellaneous key atomizer components
 - Rotary - gear set, spindle, bearings, wheel, nozzles
 - Dual Fluid – end cap, mix chambers, nozzles
- Slurry tanks
 - Agitator gear box
 - Agitator shaft
- Slurry feed
 - Critical hoses and connections
SDA O&M Summary Comments

- O&M costs – EIA Data – about $1.00/MWhr(net)
- Atomizer PM
 - Rotary - 1 to 3 month cycle typical
 - DFN – weekly inspect and clean
- Practice good atomizer parts tracking to optimize spare parts inventory and avoid unplanned maintenance
- Experiences and practice with slurry train swapping varies widely
- Take advantage of each outage to inspect internals and piping
- Establish a long-term corrosion monitoring plan
Thank You!

Kevin Redinger
B&W