Worldwide Pollution Control Association

Particulate Control **O&M Training**

APC/PCUG Conference July 12-16, 2009 The Woodlands, TX

WPCA Particulate Training Seminar – July 11, 2009 ESP Power Supply Choices

Precipitator Power Supplies

- Conventional (60 Hz) Power Supply
 - AVC cabinet + Transformer / Rectifier

- Mid Frequency (400 Hz) Power Supply
 - Converter/Control + Transformer / Rectifier

- High Frequency (>= 25 kHz) Power Supply
 - Converter + High Voltage Unit (T/R but smaller in size)

Conventional T/R – Main Components

- Tank
- Core and Frame
- Winding
 - Primary
 - Secondary
- Rectifier
- Choke
- Switch
- Bushings (LV and HV)
- Gauges and Options
- Insulating / cooling fluids

Conventional T/R Windings

Primary

- PV= 350 to 600 V AC Single Phase
 - (typically 40 80 V less than Line supply voltage)
- PI = 40A to 600A
- Single or multiple rectangular conductors used in winding

Secondary

- SV = 30 kV to 80 kV Average
- SI = 250 mA to 3000 mA Average
- Form factors: ratio of average value to RMS value of similar sinusoidal waveform
 - · describes shape of waveforms
 - Typical values: CFF = 1.2 VFF = 1.19
- Single round conductor used in winding

Copper vs. Aluminum

- Copper has higher current density.. Less cross sectional area needed
- Aluminum is cheaper and lighter, but approximately 66% larger cross sectional area required resulting in larger tank / footprint
- Oxidized aluminum in exposed connection points becomes and insulator joints are not properly connected / maintained.

Insulation

- Thermally Upgraded Kraft Paper (TUK) or fish paper
- Breakdown of insulation over time is primary limitation in operating life (25 yr. expectation)
- Pressboard in various thicknesses

Tanks

Round

- Higher Pressure Rating
- 1 seam on wall
- Typically no seam in lid gasket
- CLR always outside tank
- No Internal Ground Switch

Square / Rectangular

- Often need belly band stiffeners
- 2 seams on walls
- Option for side output
- Option for internal CLR
- Option for internal Ground Switch
- Typically Carbon steel
- +5 PSI relief valve is common
- Liquid Level Gauge zeroed at 25°C
- Painted inside and out
- Penetrations:
 - Drain Valve

- Hand Hole

- LV bushing

- HV bushing
- Temperature gauge
- Pressure gauge

Tank Configurations

TR Core & Frame

- Grain oriented electrical steel
 - Iron alloy with 0 to 6.5% silicon
 - Processed to align crystalline structure of steel
 - Increased magnetic flux by 30%
 - Decrease magnetic saturation by 5%
 - Used for higher efficiency (lower losses)
 - C, S, O2, and N2 need to be kept low
 - Produced thin rolls that are slit to correct width
 - Laminations are cut and stacked from rolls
 - Shell or Wound Construction

Core Frame

- Used to provide structural stability for the core / winding
- Commonly sits in channel on inside of tank and bolted to tank base
- Frame is grounded to tank. Core is grounded to frame.
- Welded vs. Bolted

, Schenck Process Group 2006 on A 1.0 No 8

Typical Wire-Wound Core

Bushing Choices

Low Voltage:

stock **S**

- Primary connections (typically 2.. More if there are multiple taps)
- SI feedback connection to the grounded (+) side of the secondary winding.
 - Surge arrestors and protection resistors advised to prevent high potential
- SV feedback (optional) HV side of secondary attached to resistor (kV divider) inside or outside of the tank. Resistor commonly 80 M ohm to 400 M ohm.
 - Surge arrestors and protection resistors advised to prevent high potential
- Epoxy or ceramic: epoxy commonly used if connection is on side of tank and under fluid level (less chance of leaks)
- Connections are usually bolted w/ ring lug terminations... Older bushing use compression connections on bare conductor.
- High Voltage:
- Output of the T/R set
- 1 bushing if full wave output. 2 bushings for dual half wave.
- Epoxy or ceramic / alumina: ceramic and alumina are usually the preferred media... easier to clean, and inspect... won't melt...
- Connections can be compression with bare conductor, bolted with ring lug, or screw in solid pipe conductor.
- Allowance for hot / cold steel thermal growth differences required to reduce physical stress on bushing

Rectifiers

Full wave vs. dual half wave

RC compensation vs. Avalanche diodes

Diode "Stacks" on TR Secondary

TR Set Pro's & Cons

Pro's

Con's

Extremely Durable

HEAVY

Very Fault Tolerant

- Difficult to Repair in-place
- Long Operating History
 Very High DC Ripple

Mid-Frequency TR Sets

- Utilize Existing (or New) Conventional Single-Phase TR sets
- Replace Conventional AVC with 3-Phase IGBT
 Switching Technology on Line Side to Reduce DC
 Ripple and Gain Higher Average Power to ESP

Replacement Cabinet & Retro-fit Mid-Frequency Options

Mid-Frequency TR Set Pro's & Cons

Pro's

- Keep Existing TR's
- Good Ripple Reduction
- Might Fit in Existing Cabinets

Con's

- Will 20+ Year Old TR's Sustain Stresses?
- 3-Phase Infrastructure Still Required Although can Possibly Reside at Grade
- Little Economy Achieved if Adding Power Supplies

High Frequency, Switched Mode Power Supplies

- Fully Integrated, i.e. Switching, Transformer & Control Systems On-Board Utilizing 3-Phase AC
- Designed to Deliver Nearly "Pure", Ripple-Free DC to an ESP

Typical (& Atypical) HF Power Supplies

HF TR Set Pro's & Cons

Pro's

- Light Weight (500-700 lbs.)
 Requires Little Structural
 Modification
- ESP Performance Improvement Characteristics Undeniable
- Maintenance & Repairs can be Performed in-Place on Some Designs
- More Efficient

Con's

- Require a Higher Level of Maintenance Attention
- Can be More Expensive Depending on Application
- Some Suppliers Heavily Dependent on Proprietary Components
- Failure Rate High on Early
 Generations of the Technology

Important Design & Selection Criteria for HF TR sets

- What is the Application?
- What is the Operating Environment?
- Be Redundant in the Redundancy Department!
- Maintenance Requirements Different from TR Set?
- This Thing is Different Train Your Staff!

Thank You!

Questions??